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Pathological pallidal beta activity in
Parkinson’s disease is sustained during sleep
and associated with sleep disturbance

Zixiao Yin 1, RuoyuMa 1,Qi An1, YichenXu1, Yifei Gan1, GuanyuZhu1, Yin Jiang2,
Ning Zhang3, Anchao Yang1, Fangang Meng2, Andrea A. Kühn 4,5,
Hagai Bergman 6,7,8, Wolf-Julian Neumann 4,10 & Jianguo Zhang 1,2,9,10

Parkinson’s disease (PD) is associated with excessive beta activity in the basal
ganglia. Brain sensing implants aim to leverage this biomarker for demand-
dependent adaptive stimulation. Sleep disturbance is among the most com-
mon non-motor symptoms in PD, but its relationship with beta activity is
unknown. To investigate the clinical potential of beta activity as a biomarker
for sleep quality in PD, we recorded pallidal local field potentials during
polysomnography in PD patients off dopaminergic medication and compared
the results to dystonia patients. PD patients exhibited sustained and elevated
beta activity across wakefulness, rapid eye movement (REM), and non-REM
sleep, which was correlated with sleep disturbance. Simulation of adaptive
stimulation revealed that sleep-related beta activity changes remain unac-
counted for by current algorithms, with potential negative outcomes in sleep
quality and overall quality of life for patients.

Sleep disturbances significantly impair the quality of life in peo-
ple living with Parkinson’s disease (PD)1. Insomnia and rapid eye
movement (REM) sleep behavior disorder (RBD) are common
manifestations of PD-related sleep disturbance2,3 that can be
correlated and sometimes even predict other non-motor symp-
toms, such as cognitive decline4,5. Current therapies including
medication and continuous deep brain stimulation (DBS) are not
sufficiently adjustable to specifically target sleep disturbance in
PD6. This represents an unmet need in the development of indi-
vidualized therapeutic approaches. Adaptive DBS is a novel
treatment strategy that promises unprecedented temporal and
spatial precision for therapeutic adjustment7. This opens new
horizons for circadian and sleep-related therapeutic adaptation8,9.

First technological solutions to sleep-aware adaptive DBS and
chronotherapeutic treatment strategies have now emerged, with
the potential to revolutionize the targeted treatment of sleep
disturbance8. However, the first ongoing clinical trials are pri-
marily informed by data obtained from awake patients. Specifi-
cally, excessive beta activity, a hallmark of the hypodopaminergic
parkinsonian state, is being used as a biomarker for adaptive
DBS10 and was found to be reduced during sleep11–15. While mod-
ulation of beta activity was reported during sleep cycles, the
pathophysiological impact of this activity pattern on sleep quality
in human patients remains unknown. Recently, a potential rela-
tionship between beta activity and sleep disturbance has first
been reported in a non-human primate model of Parkinson’s
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disease16, urging further investigation in the human domain. With
the present study, we aim to address this important knowledge
gap by comparing pathological beta activity across sleep cycles in
the internal pallidum from patients with Parkinson’s disease with
a control group of subjects suffering from dystonia, a different
neurological disorder treated with internal pallidum DBS.

Results
Twelve subjects with Parkinson’s disease and twenty subjects with
dystonia undergoing DBS electrode implantation in the ventro-
posterior-lateral (motor) domain of the internal pallidum (GPi) were
recruited for electrophysiological recordings during sleep. Standar-
dized polysomnography was combined with invasive local field
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potential (LFP) recordings from the DBS electrodes in the GPi (Fig. 1a).
After visual and algorithmic sleep staging, data from 40 nights across
32 patients were analyzed (for clinical information see Table 1). A
comparison of sleep parameters indicated that patients with PD had
significantly shorter total sleep time, longer sleep latency, less REM
sleep, and more sleep segmentations than patients with dystonia
(Table 2). Representative non-REM (NREM) and REM sleep epochs as
well as a whole-night hypnogram and the corresponding spectrogram
(from subject PD-8) are shown in Fig. 1b–d. Average power spectra
corroborate previous reports indicating reduced beta activity during
non-REM11–14, when compared to awake and REM stages (Fig. 1e, f).
However, these studies did not compare beta activity during sleep to a
control group without Parkinson’s disease.

Pallidal beta activity in PD significantly exceeds controls in
NREM and REM sleep
To study the pathophysiological significance of beta activity during
NREM and REM stages we compared pallidal beta activities to the
control group of patients with dystonia (Fig. 2). First, we reproduced
previous reports in awake patients demonstrating higher beta activity
in PD (P = 0.001, Mann–Whitney U test) and higher theta activity in
dystonia patients (P <0.001, Mann–Whitney U test). Importantly,
excessive beta activity was not restricted to the awake stage but sus-
tained during NREM (P = 0.021, Mann–Whitney U test) and REM
(P = 0.001, Mann–Whitney U test) sleep epochs. Substage analysis of
NREMsleep indicated thatbeta powerwashigher in patientswith PD in
N1 (P =0.006) and N2 (P =0.013), but not in N3 sleep (P =0.093,
Mann–Whitney U test) than in patients with dystonia (Supplementary
Fig. 1). To control for potential confounds due to changes in the
aperiodic component of the spectra, we performed a supplementary
comparison of the periodic activity after spectral parameterization17,
which confirmed higher beta activity in PD across all stages (Supple-
mentary Fig. 2). Further, beta burst analysis indicated that the exces-
sive beta activity duringNREMandREMsleep in PDcouldbe attributed
to prolonged burst durations (Supplementary Fig. 3). The significant
differences were specific to the pallidal recordings, with activity spa-
tially peaking within 1.50–2.06mmproximity to a previously reported
optimal stimulation target location18. No difference in beta activity was
present in cortical electroencephalography (Supplementary Fig. 4).

Excessive pallidal beta activity during NREM sleep is associated
with lower sleep quality
Following a previous non-humanprimate study16 wehypothesized that
pathological beta activity during sleep may be associated with PD-
related sleep disturbance. To investigate this, we correlated pallidal
beta power during NREM and REM episodes with sleep quality ratings
(Fig. 3). Pallidal beta power duringNREMsleepwas robustly correlated
with the Pittsburgh sleep quality index (PSQI) in PD (Spearman rho =
0.63, P =0.028) but not dystonia patients (Spearman rho =0.19,
P =0.434, Fig. 3a). This correlation was more robust for high beta
(20–30Hz) than low beta (13-20Hz) power, and for NREM2 than
NREM1/3 stages of sleep (Fig. 3b). A significant correlation was iden-
tified between beta power during NREM sleep and the RBD-Screening
Questionnaire (RBDSQ) score, but this finding may have limited spe-
cificity as no correlation was found when analyzing the proportion of

REM sleep time without atonia as a proxy of RBD severity (Supple-
mentary Fig. 5). Finally, PD motor sign severity as assessed with the
motor part of the Unified Parkinson’s disease rating scale (UPDRS-III)
was correlated with pallidal beta activity in awake (Spearman rho =
0.78, P =0.003) but not sleep epochs (all P >0.05). For a summary of
the clinical correlation results see Fig. 3c.

Common adaptive DBS algorithms will restrain therapeutic
delivery during sleep while pathological activity may be
sustained
Given the abovementioned results indicating higher pallidal beta
activity in PD than in dystonia across REMandNREMepochs, but lower
beta activity when compared to awake stages, we hypothesized that
common adaptive DBS algorithms may not sufficiently respond to
pathological beta activity during sleep. This may be problematic,
especially when beta activity is associated with sleep disturbance. To
address this, we simulated a common threshold-based (i.e., 50th
percentile19) adaptive DBS algorithm calibrated on the awake data
(Fig. 4). Our results suggest that adaptive DBS would reduce ther-
apeutic deliveries during NREM (stimulation-on time: 4.98%) and REM
(stimulation-on time: 30.00%) sleep stages, which was independent of
a potential effect of sleep duration.

Discussion
Three main conclusions can be drawn from our study. First, we show
evidence that pallidal beta activity is elevated across NREM and REM
sleep in PDwhen compared to recordings frompatients with dystonia.
This result could be attributed to longer burst durations and was
specific to a localized peak in proximity to the optimal stimulation
target in the internal pallidum and absent in cortical EEG recordings.
Second, our findings suggest that specifically elevated beta activity
during NREM sleep, especially the N2 sleep stage, can be associated
with sleep disturbance and lower sleep quality in PD but not dystonia
patients. Finally, we demonstrate that common adaptive DBS algo-
rithms calibrated on awake data will not modulate pathological beta
activity during NREM and REM sleep stages. This is particularly
important as it may be addressed through refined brain signal
decoding algorithms in sleep-aware adaptive DBS paradigms. Our
findings could pave the way for an individualized treatment of sleep
disturbance in PD.

Our findings corroborate an impactful report linking beta activity
with sleep disturbance in the 1-methyl-4-phenyl-1,2,3,6-tetra-
hydropyridine (MPTP) non-human primate model of PD16. The study
demonstrated that MPTP intoxication induced elevated beta power
and spiking during NREM sleep in the subthalamic nucleus and
external and internal pallidum. This was associated with delayed sleep
onset, increased sleep fragmentation, and increased wakefulness in
non-human primates when compared to the healthy state. In human
studies, such direct comparisons to healthy states are not possible,
because invasive recordings are only available in patients undergoing
neurosurgical interventions for brain disorders. To relate neural
activity to disease-specific aspects, two strategies have emerged: (a)
relative differences in activity from the same anatomical structure can
be compared to control groups with other brain disorders20–22 and (b)
within cohort correlations may indicate associations of brain activity

Fig. 1 | Recordings of pallidal local field potentials in parallel to poly-
somnography in subjects with Parkinson’s disease and dystonia. a Schematic
representation of the sleep recording. Pallidal local field potentials are recorded in
parallel to the polysomnography consisting of the electroencephalogram (EEG),
electrooculogram (EOG), and electromyogram (EMG). In the morning after sleep
recording, a 5-min recording of resting wakefulness is further obtained. b shows
10 s of characteristic N2 sleep from subject PD-8, epoch 26. Characteristic sleep
spindles are seen in polysomnography. Note that for visualization, the amplitude of
the pallidal channels is amplified. c shows 10 s of characteristic REM sleep from

subject PD-8, epoch 16. Prominent rapid eye movement, low-voltage waves, and
muscle atonia are seen in EOG, EEG, and EMG, respectively. d shows a repre-
sentative spectrogram of a whole-night recording from subject PD-8 with the
hypnogram on top. e shows the average power spectra across awake, NREM, and
REM sleep epochs in all patients with Parkinson’s disease. f shows the average
power spectra across awake, NREM, and REM sleep epochs in all patients with
dystonia. Shaded areas represent SEM. Theta and beta frequency band ranges are
highlighted in blue.
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patterns with clinical signs of the disease23. In the awake state, both of
these strategies have demonstrated a clear association between beta
activity and PD motor signs, where basal ganglia beta activity is ele-
vated when compared to patients with dystonia20,21 and robustly
associated with motor sign severity, most recently reproduced in a
cohort of 106 patients24. We have now extended both approaches to
the sleep state, for which previous studies11–15 have demonstrated that
beta is influencedby sleep-stage transitions, promising potential utility
for sleep-stage decoding25, but the relative pathological significance
remained unaddressed. Our study extends these insights by providing
direct evidence that compared to dystonia subjects, pallidal beta
activity in PD is continuously higher across sleep stages and correlated
with sleep disturbance.

As previously reported, we found a drop in beta activity during
NREM stages, when compared to REM and wakefulness, resulting in a
relative overlap of power spectra across the PD and the dystonia
groups. However, despite the amplitude decrease, our results suggest

that beta power remains excessively high during NREM sleep when
comparing PD with dystonia subjects. In addition, we found evidence
that this pathophysiological pattern during the NREM phase may be
associated with impaired sleep quality, as beta power during NREM
sleep showed robust correlations with the PSQI, a validated assess-
ment of sleep disturbance. This correlation was most robust in the
NREM2 stage of sleep, potentially because N2 sleep occupied the
longest duration of sleep time (over 60% in our patient cohort) and
that physiologically important sleep oscillations such as spindles and
K-complexes are typically most prominent in N2 sleep26. When com-
paring beta power across sleep cycles in the PD cohort, we found a
relative decline in beta power from N1 sleep, where it was close to that
in wakefulness, to N3 sleep, where it was more similar to that in dys-
tonia. Whether this indicates a potential “normalization” effect of
N3 sleep and whether, inversely, a suppression of basal ganglia beta
activities could result in longer deep sleep in PD requires further
investigation.When assessing the spectral specificity of our results, we

Table 1 | Demographics and clinical characteristics of the included patients

Patient Nights (n) DD (y) PSQI RBDSQ Motor scorea Medication

Parkinson’s disease

PD-1 1 20 16 11 46/28 Madopar, Amantadine, Piribedil

PD-2 1 7 15 10 26/11 Madopar, Rasagiline

PD-3 1 6 9 2 53/23 Madopar, Sinemet, Pramipexole

PD-4 1 6 13 5 33/21 Madopar, Piribedil, Entacapone, Pramipexole

PD-5 1 5 6 1 29/15 Madopar

PD-6 1 8 9 1 45/31 Madopar, Piribedil

PD-7 2 10 13 7 69/31 Madopar, Sinemet

PD-8 2 6 6 1 71/32 Sinemet, Piribedil, Entacapone

PD-9 2 12 15 2 54/18 Madopar, Sinemet, Amantadine

PD-10 1 9 12 12 67/32 Madopar, Trihexyphenidy, Piribedil

PD-11 1 7 5 1 45/23 Madopar

PD-12 2 8 17 13 66/37 Madopar, Entacapone, Pramipexole

Median (IQR) 7.5 (4.0) 15.0 (7.0) 3.5 (9.5) 49.5 (30.8)/25.5 (13)

Dystonia

Dyst-1 2 2 5 – C/20 Benzhexol, Baclofen, Clonazepam

Dyst-2 2 3 10 – M/8 Clonazepam, Tiapride hydrochloride, Mecobalamin

Dyst-3 1 5 9 – M/7 Botulin, Carbamazepine

Dyst-4 2 5 9 – M/23 Clonazepam

Dyst-5 1 4 6 – M/6 Baclofen

Dyst-6 1 4 1 – C/28 Amantadine, Benzhexol

Dyst-7 1 3 19 – M/12 Tiapride hydrochloride

Dyst-8 1 5 14 – M/13 Tiapride hydrochloride

Dyst-9 1 7 5 – M/16 Botulin

Dyst-10 2 3 3 – C/32 NA

Dyst-11 1 15 11 – M/18 Botulin

Dyst-12 1 15 1 – M/7 NA

Dyst-13 1 4 5 – C/22 Baclofen, Clonazepam

Dyst-14 1 3 3 – M/9 Clonazepam

Dyst-15 1 5 11 – M/15 Benzhexol, Haloperidol

Dyst-16 1 6 7 – C/38 NA

Dyst-17 1 7 6 – M/13 Botulin, Tiapride hydrochloride

Dyst-18 1 3 6 – M/16 Botulin

Dyst-19 1 6 10 – C/24 Clonazepam

Dyst-20 1 2 6 – C/17 Baclofen, Haloperidol

Median (IQR) 4.5 (3.0) 6.0 (5.0) –

DD duration of disease, PSQI Pittsburgh sleep quality index, RBDSQ REM sleep behavior disorder-screening questionnaire, Dyst dystonia, PD Parkinson’s disease, C cervical dystonia, M Meige
syndrome (oromandibular dystonia), IQR interquartile range, NA not applicable.
aPreoperativemotor scorewas theTorontoWesternSpasmodicTorticollis Rating forcervical dystonia, Burke–Fahn–MarsdenDystoniaRatingScale (movement) fororomandibulardystonia, andMDS-
Unified Parkinson’s Disease Rating Scale-III off/on medication for Parkinson’s disease.
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noted that high beta (20–30Hz), rather than low beta (13–20Hz)
power, showed robust correlations with sleep disturbances. In the
awake state, especially in the subthalamic nucleus, low beta activity
was more robustly modulated by therapeutic interventions and cor-
related with PD motor signs27. Yet, even in awake recordings in the
present cohort, high beta (rho = 0.715, P =0.009), rather than low beta
(rho = 0.410, P =0.186) power correlatedmost strongly with UPDRS-III.
We speculate that a) the relative relationship of spectral frequency and
clinical phenomena may be subject-specific, and (b) a potential sys-
tematic difference may arise from the fact that the presented activity
patterns were recorded from the internal pallidum, while most pre-
vious work described activity from the subthalamic nucleus. In sum-
mary, our study provides evidence that pallidal beta activitymay play a
pathological role in PD both during sleep and in wakefulness.

One of the most robust prodromal signs of alpha-synuclein neu-
ropathology including Parkinson’s disease is REM sleep behavior dis-
order, a parasomnia associatedwith dream enactment and loss of REM
sleep atonia28. In the present cohort, clear dream enactment behavior
was not observed in any of the included PDpatients, but NREMbut not
REM-related beta activity was found to be associated with higher
scores in the RBD-Screening Questionnaire. Given that this ques-
tionnaire is unspecific and does not provide a continuous scaling of
RBD severity, we further quantified the loss of REM sleep atonia, as an
indirect marker of RBD severity. We observed REM sleep without
atonia in a median of 26.1% of all REM sleep epochs in PD patients but
found no significant correlation between the relative proportion of
these epochs with beta activity measures. Thus, considering the lim-
ited sensitivity and specificity of the RBD-Screening Questionnaire in
diagnosing REM sleep behavior disorder29, we speculate that the cor-
relation between NREM beta power and RBDSQ could rather corro-
borate our abovementioned finding thatbeta can generally index sleep
disturbances, which is further substantiated by the high correlation
between PSQI and RBDSQ scores (rho =0.821, P =0.001). A recent,
more specific investigation of four PD subjects proposed that pallidal
beta oscillations can be synchronized during movements in the REM
sleepphase30. Future studieswith expanded sample size should aim for
a direct comparison of patient cohorts with/without REM sleep

behavior disorder, optimally capturing the neural dynamics of the
basal ganglia while parasomnia is present. This could shed light on the
relevanceof pathological beta activity in dream enactment, potentially
even in the prodromal stages of Parkinson’s disease.

Sleep quality in PD patients can be improved with DBS across
basal ganglia targets (including subthalamic nucleus31, internal
pallidum32, and external pallidum33), but the therapeutic mechanism
remains elusive34. Our results suggest that excessive beta power in
NREM sleep could be a therapeutic target to treat sleep disturbance.
Moreover, given that DBS, similar to medication can suppress beta
activity35, we may speculate that sleep improvement through both
treatments may be associated with beta reduction. Future studies
should verify whether high-frequency stimulation applied during
NREM and REM sleep has the same effect on beta suppression as that
applied duringwakefulness. Furthermore, the best stimulation pattern
required to suppress beta during sleep remains to be determined.
Since we did not identify sleep-related behavior correlates of beta
activity during the REM stage here, and given evidence showing that
DBS may occasionally induce de novo RBD36, it requires further
investigation on whether stimulation should be switched on or off
during REM sleep.

The direct relationship of beta activity with PD motor signs has
inspired a new adaptive DBS treatment paradigm, that uses beta
activity as a biomarker to adapt stimulation to therapeutic demand37. A
challenging aspect of this novel therapeutic approach is the definition
of a valid control algorithm, that translates neurophysiological
recordings into stimulation parameter changes. Notwithstanding this,
the first international multicenter trials are now investigating the
potential clinical utility of this approach. While specific algorithms can
vary, a commondenominator across centers and studies is the fact that
one or multiple thresholds are required to calibrate the control
algorithm38. To date, these thresholds are being determined while
patients are awake. In our study, we demonstrated that even though
beta activity is significantly reduced duringNREM, it remains excessive
when compared to dystonia. This may indicate that DBS during NREM
stages may be necessary for the alleviation of sleep disturbance in PD.
Our simulation of a common algorithm, however, revealed that
excessive NREM beta activity may remain untreated in the ongoing
adaptive DBS trials. Adopting the conventional threshold-based
approach, adaptive DBS would have only triggered in around 5% of
the NREM and 30% of REM sleep phases whenmaintaining at least 50%
of stimulation time during wakefulness. We believe it is important to
raise awareness that this new therapy has very specific sleep stage-
dependent effects that should be closely studied in clinical trials.
Moreover, our findings call for novel sleep-aware adaptive DBS
implementations, that can automatically dissociate REM and NREM
stages and adapt thresholds and stimulation delivery accordingly. The
feasibility of this approach was recently shown in a sensing-enabled
impulse generator using a combination of two machine learning clas-
sifiers trained on electrocorticography and LFP recordings8. While
generally very promising, it is important to note, that pathophysiolo-
gical phenomenamay interact with suchmachine learning algorithms,
as recently shown for beta bursts that can detriment grip-force
decoding in PD39. In the future, sleep may be one of many decoding
targets25, through which machine learning will extend the clinical uti-
lity of adaptive DBS adjusting to the individual challenges of our
patients in their everyday lives40–42. Such intelligent adaptive DBS sys-
tems may not only improve the nocturnal motor symptoms of PD but
also address sleep and sleep-related dysfunctions in PD as a whole.

We would like to highlight the following limitations of our study.
First, even though the number of included subjects in this study is
higher thanmost previous studies with similar aims14,30 the sample size
is still relatively small. Second, subjects suffering from poor sleep
quality had reducedor even completely abolishedREMsleep14,16, which
further reduces the amount of data for REM sleep analyses in this

Table 2 | Sleep parameters of the included patientsa

Parkinson’s dis-
ease (n = 12)

Dystonia (n = 20) P valuesb

TTB (min) 494.0 (51.2) 509.0 (59.0) 0.599

TST (min) 298.4 (108.2) 368.2 (75.0) 0.012

WASO (min) 222.0 (143.0) 138.4 (55.0) 0.129

SL (min) 50.1 (55.7) 14.2 (23.7) 0.049

RSL (min) 206.4 (181.3) 108.5 (77.0) 0.042

N1pct (%) 8.5 (14.9) 7.1 (7.5) 0.800

N2pct (%) 60.6 (15.4) 65.8 (17.5) 0.302

N3pct (%) 14.9 (10.9) 8.1 (10.6) 0.115

Rpct (%) 13.0 (6.0) 16.1 (9.8) 0.037

SE (%) 59.9 (29.6) 74.3 (12.9) 0.064

Sfrag (n)c 15.5 (8.8) 9.5 (5.2) 0.015

RSWA (%)d 26.1 (24.9) 7.8 (14.8) 0.083

TTB total time in bed, TST total sleep time,WASOwake after sleep onset, SL sleep latency, RSL
REM sleep latency,N1pct percentage of the NREM stage 1 sleep,N2pct percentage of the NREM
stage 2 sleep,N3pct percentage of the NREM stage 3 sleep, Rpct percentage of the REM sleep,
SE sleep efficiency, Sfrag sleep fragmentations, RSWA REM sleep without atonia.
aDescriptive data are presented as the median (interquartile range).
bP Statistics are obtained using two-sided Mann–Whitney U test without applying the Bonferroni
correction. Significant comparisons with uncorrected P value < 0.05 are highlighted in bold.
cSleep fragmentation is quantified as the times that sleep is interrupted by >2minutes’ wake-
fulness.
dRSWA is quantified as the percentage of REM sleep time when EMG activities are higher than
two times the 5th percentile of the chin EMG activities during NREM sleep (detailed in the
“Methods” section).
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study. Recordings across multiple nights could be a potential solution
to this problem. Third, our data are recorded through externalized
leads rather than sensing-enable devices, which may in theory enable
longer recording periods15 and provide a more ecologically valid in-
house assessment of sleep. However, current commercially available
devices, such as theMedtronic Percept, can only capture a single value
of beta power per hemisphere every ten minutes. Thus, externalized

recordings haveunique advantages includinghigher sampling rate and
better synchronization between LFP signals and PSG43, which is espe-
cially important for sleep studies. A fourth limitation of the present
study is the focus on excessive beta synchronization in PD. Future
investigations may lay more focus on increased pallidal theta power
during REM sleep in dystonia to expand our understanding of disease-
specific oscillatory abnormalities in the basal ganglia during sleep.
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Methods
Patients and surgery
Thirty-two subjects with movement disorders (12 with PD, age 59.0
[15.0] years, 6 males; 20 with dystonia, age 54.0 [18.0] years, 10
males) scheduled to receive GPi-DBS implantation at Beijing Tiantan
Hospital were included. The inclusion criteria were: (i) for primary
dystonia patients, predominantly cervical or oromandibular dystonia

without prominent limb involvement; (ii) for PD patients, unques-
tioned diagnosis of PD based on the UK brain bank criteria, and (iii)
for all patients, the capacity to cooperate with whole-night poly-
somnography recordings and the absence of cerebral lesions on
magnetic resonance imaging (MRI) such as tumor and stroke. Stan-
dard motor assessments using Toronto Western Spasmodic Torti-
collis Rating/Burke–Fahn–Marsden Dystonia Rating Scale (for

a b

c

0.38

0.81

0.37

0.62

0.49

Fig. 3 | Correlations between pallidal beta power and sleep disturbance ratings
in Parkinson’s disease. a Regression plots showing the Spearman correlations
between beta power during non-rapid eye movement (NREM) sleep and the Pitts-
burgh sleep quality index (PSQI) in Parkinson’s disease (red) and dystonia (gray).
The error bands are the 95% confidence interval for the regression estimate. The
null hypothesis is defined as two-sided. b Bar plot showing the Spearman correla-
tion coefficients between beta power during NREM sleep and the PSQI when ana-
lyzing the high/low beta band and the NREM 1/2/3 stage of sleep. Bars and items

with Spearman correlation P <0.05 are colored in orange and highlighted in bold,
respectively. P for the two-sided Spearman correlation between NREM high-beta
power and PSQI = 0.001; P for the two-sided Spearman correlation between beta
power in the NREM2 stage and PSQI = 0.033. c Heat map showing the correlation
matrix between beta power in different sleep–wake stages, off-medication Unified
Parkinson’s Disease Rating Scale motor score (UPDRS-III), and the PSQI. Squares
with Spearman correlation P <0.05 are displayed. Source data are provided as a
Source Data file.

Fig. 2 | Comparisons of power spectra between Parkinson’s disease (PD) and
dystonia across different sleep stages and the spatial localizationofbeta in PD.
a–c Power spectra and comparisons of theta and beta power in awake epochs
between PD and dystonia. **P for theta power<0.001; **P for beta power=0.001;
n for PD subjects = 12;n for dystonia subjects = 20; two-sidedMann–WhitneyU test.
d–f Power spectra and comparisons of theta and beta power in non-rapid eye
movement (NREM) sleep between PD and dystonia. P for theta power = 0.083;
* P for beta power = 0.021; n for PD subjects = 12; n for dystonia subjects = 20; two-
sided Mann–Whitney U test. g–i Power spectra and comparisons of theta and beta
power in REM sleep between PD and dystonia. **P for theta power =0.004; **P for
beta power = 0.001; n for PD subjects = 10; n for dystonia subjects = 17; two-sided
Mann–WhitneyU test. Shaded areas in all spectrumplots represent SEM. For all box
plots, the lower and upper borders of the box represent the 25th and 75th per-
centiles, respectively. The centerline represents the median. The whiskers extend

to the smallest and largest data points that are not outliers (1.5 times the inter-
quartile range). j A visualization of top-beta sites in different sleep stages in Mon-
treal Neurological Institute space (wakefulness [X = −20.7, Y = −6.8, Z = −5.7], NREM
[X = −21.5, Y = −5.7, Z = −5.1], and REM [X = −20.7, Y = −6.1, Z = −5.2] sleep) relative to
the position of internal globus pallidus (GPi) and external globus pallidus (GPe).
The three top-beta sites located near, with no significant difference in coordinates
in the X, Y, or Z axes (P =0.463, 0.603, and 0.944 for X, Y, and Z axes, respectively,
two-sided Kruskal–Wallis test). Three sites of interest are also displayed including
(1) the average of all electrodes (X = −21.4, Y = −4.6, Z = −3.3), (2) the mean active
contacts (X = −21.1, Y = −5.7, Z = −5.3), and (3) a literature-based coordinate
(X = −22.6, Y = −6.7, Z = −4.9) described by Elias et al.18 to represent the optimal
pallidal site for deep brain stimulation in PD. The upper right inset shows the lead
localization of all 32 subjects. Source data are provided as a Source Data file.
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Fig. 4 | Simulation of adaptive deep brain stimulation during sleep. a Line plots
showing sleep stage definitions of a 700-s recording segment obtained from the
subject PD-8. b Shows the corresponding chin electromyogram activities of the
700-s recording segment. Note that in wakefulness the electromyogram activities
are highest; in rapid eye movement (REM) sleep the background electromyogram
activities are lower than that in non-REM (NREM) sleep despite occasional twitch-
related electromyogram bursts. c Shows the time–frequency representation of
pallidal activities of the 700-s sleep recording segment. a.u. refers to the arbitrary
units.d shows the dynamicbeta power change in the 700-s recording segment. The
medianbetapower inwakefulness is labeledwith a reddashed line and the 25th and

75th beta power in wakefulness is labeled in gray dashed lines and shaded in light
blue. e Shows a simulation of adaptive deep brain stimulations using the median
beta power inwakefulness as triggering thresholds. f Shows the comparison of beta
power across four quarters (i.e., 0–25%, 25–50%, 50–75%, and 75–100% of the total
length) of NREM (left, P =0.098, two-sided Friedman test) and REM sleep length
(right, P =0.782, two-sided Friedman test). Data are presented as mean values ±
SEM.g Shows the comparison ofON-stimulation time across four quarters of NREM
(left, P =0.258, two-sided Friedman test) and REM sleep length (right, P =0.056,
two-sided Friedman test). Data are presented as mean values ± SEM. Source data
are provided as a Source Data file.
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dystonia), or MDS-UPDRS-III (for PD, on and off dopaminergic
medication) were conducted before the surgery. Subjective sleep
quality was evaluated using the PSQI for all subjects and RBD was
assessed using the RBD-screening questionnaire for PD subjects. This
study conformed to the Declaration of Helsinki and was approved by
the local IRB of Beijing Tiantan Hospital. All subjects provided writ-
ten informed consent. DBS surgery was performed as per routine
protocol44,45. Guided by the Leksell stereotactic system (Elekta
Instrument AB, Stockholm, Sweden), DBS electrodes (model 3387,
Medtronic, USA, or model L302, Pins Medical, China) were bilaterally
implanted in the GPi region under local anesthesia. Intraoperative
electrophysiology recordings using microelectrode and temporary
stimulation through microelectrode were conducted for trajectory
selection. Precise placement of DBS electrodes was confirmed
through postoperative anatomical computed tomography (CT)
imaging. Before the second stage of surgery (i.e., the implantation of
the pulse generator), DBS leads were externalized for a median of
4 days (range: 3–6 days), during which we recorded whole-night
polysomnography and synchronized pallidal local field potentials
(hereafter called sleep recording).

Sleep recordings and staging
Sleep recording was conducted during DBS lead externalization, and
lasted for one or two successive nights. Data from all recording
nights from one subject were pooled together. All anti-dystonia
medications were stopped after 12 a.m. (midday) on the day of
recording and anti-parkinsonism drugs were stopped after 6 p.m.
Post-hoc analysis indicated no residual effects of medication on beta
estimation in PD patients (comparison of beta power between four
quarters [i.e., the 0–25%, 25–50%, 50–75%, and 75–100% temporal
course] of wake after sleep onset [WASO], Q = 1.32, P = 0.724, two-
sided Friedman test). Polysomnography consisting of surface elec-
troencephalogram (EEG), electrooculogram (EOG), and chin elec-
tromyogram (EMG) was implemented following standard settings
recommended by the American Academy of Sleep Medicine
(AASM)46, as shown in Fig. 1a. Surface bipolar EEG was obtained from
frontal (F3-M2, F4-M1), central (C3-M2, C4-M1), and occipital (O1-M2,
O2-M1) areas, as per the 10–20-system. Synchronized pallidal LFPs
were recorded bipolarly from the adjacent contacts (01, 12, and 23) of
each electrode. All signals were amplified ×195, bandpass filtered at
0.08 and 300Hz and recorded at a sampling rate of 1000 or 2000Hz
through the JE-212 amplifier (Nihon Kohden, Tokyo, Japan). Sleep
recording generally started at 9 p.m. (lights out) and ended at 7 a.m.
the next morning (lights on). Sleep stages (wake, N1, N2, N3, or REM
sleep) were determined in each 30-s epoch by two experienced sleep
specialists (N.Z. and J.M.) according to the AASM criteria version 2.6.
Importantly, to avoid possible bias induced by the subjectivity of
human scorers, all sleep data were also staged using an established
open-source sleep staging algorithm (https://github.com/
raphaelvallat/yasa)47, which takes EOG, EEG, EMG, and demo-
graphics including age and gender as input. Only epochs with con-
sistent staging results between human and algorithm scorers were
qualified for further analysis, accounting for 85.6% of all epochs. Note
that patients PD-2/10 and Dyst-10/11/13 had low counts of accurately
diagnosed REM sleep epochs (n < 5) and were analyzed for NREM
sleep and awake states only. A characteristic NREM and REM sleep
epoch segment is shown in Fig. 1b and c, respectively. A repre-
sentative spectrogram from subject PD-8 with the hypnogram on top
is shown in Fig. 1d. In the main analysis, N1, N2, and N3 sleep epochs
were pooled together to represent NREM sleep while in a supple-
mentary analysis, the three substages of NREM sleep were analyzed
separately. In the morning following sleep recording (1–2 h after
awakening), we also obtained 5-min artifact-free recordings when the
subject was lying in bed in resting wakefulness (hereafter called
awake epochs).

Sleep parameters
Based on the polysomnography hypnogram, sleep parameters were
extracted including the total time in bed, total sleep time,WASO, sleep
latency (time to first sleep epoch), REM sleep latency (time to first REM
sleep epoch), the time proportion of N1, N2, N3, and REM sleep, sleep
efficiency (total sleep time/total time in bed), sleep fragmentation, and
the time proportion of REM sleep without atonia (RSWA). Sleep frag-
mentation was quantified as the number of events that sleep is inter-
rupted by >2min ofwakefulness. RSWAwas determinedwhen the chin
EMG (10–70Hz bandpass) variance in REM sleep was higher than two
times the 5th percentile of the chin EMGvariance inNREM sleep, which
is an established approach listed in the International RBD Study Group
(IRBDSG) guidance48,49. For a better temporal resolution and as
recommended by the IRBDSG49, the above determination was made
for each 3-s REM sleep segment.

Signal processing and channel selection
Signal analysis was performed using MNE-Python50 and SciPy51. All sig-
nals were notch filtered (Butterworth, bandwidth = 4Hz, order = 3) to
reject the 50Hz ambient noise and harmonics, and downsampled to
500Hz. Power spectral density (PSD) of pallidal LFP was computed
between 2 and 80Hz using the Welch periodogramwith a fast Fourier
transformof 512 points and 50%overlap, which resulted in a frequency
resolution of 0.97Hz. PSD was normalized to the percentage of the
total power of 2–45 and 55–80Hz. Band power of theta (4–12 Hz) and
beta (13–30Hz) was then extracted. In addition, to exclude potential
impacts from the aperiodic (1/f-like) component of the signal on our
estimation of beta oscillations (the periodic component)17, we also
calculated the aperiodic-adjusted spectrum of the pallidal LFP using
the FOOOF fitting implemented in Python (https://fooof-tools.github.
io/fooof/). We chose the channel located within the GPi to represent
pallidal activity, whichwas confirmed through lead reconstruction (see
below). In cases where more than one bipolar channel was within the
GPi region, the channel with higher beta during resting wakefulness
was selected for analysis for both the PD and dystonia subjects. For
cortical signals, we used central EEG channels (i.e., C3 and C4) to
represent cortical activities and processed the EEG signals using the
same pipeline as we processed pallidal LFPs.

Beta burst analysis
We conducted the burst dynamic analysis following the criteria that
are established by Tinkhauser et al.20,52. The only difference was that
since very few hemispheres (4/34) in dystonia subjects demonstrated
clear beta peaks during NREM or REM sleep, we defined each 1-Hz
frequency bin in the beta band range as peak frequency (18 bins, from
13 to 30Hz) and conducted burst determination based on these indi-
vidual 18 peak frequencies. The final results were the average of the 18
iterations. Data were first downsampled to 200Hz and decomposed
using Morlet wavelets with 10 cycles. The obtained wavelet amplitude
was further z-score normalized to address scale differences. A
threshold was defined as the 75th percentile of the amplitude dis-
tribution among all hemisphere’s data from all subjects. A burst was
determined when the instantaneous power crossed the threshold for
at least 0.1 s. Burst duration was categorized into six-time windows of
0.15 s starting from 0.1 to >0.85 s in duration. Burst amplitude was
defined as the area under the curve between the amplitude curve and
the threshold. Burst density was defined as the number of bursts
per second.

Electrode reconstruction and beta power localization analysis
We used the advanced electrode localization pipeline (in Lead-DBS
version 2.5.3, MATLAB 2019b) with default settings for electrode
reconstruction and group analysis in Montreal Neurological Institute
(MNI) space53. The pre-operative MRI scan (T1 sequence) was linearly
co-registered with the postoperative anatomical CT and nonlinearly
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warped to the MNI template (ICBM 2009bNonlinear Asymmetric)54

using the advanced normalization tools (ANTs)55. Electrode trajec-
tories were automatically detected using the PACER approach56 and
were manually refined. The coordinate of a bipolar recording site was
defined as the Euclidean midpoint between the two contacts. Sites on
the left side were nonlinearly flipped to the right.

To explore the localization of beta power in different sleep stages,
we calculated the average coordinate of the recording sites with the
top 10% beta power in wakefulness, NREM, and REM sleep. These sites
were visualized together with three additional points of interest. First,
the average location of all electrodes (regardless of beta). Second, the
active DBS contacts are used in optimal programming. Third, a
literature-based coordinate described by Elias et al.18 to represent the
optimal pallidal site for DBS in PD.

Adaptive DBS simulation analysis
To explore how adaptive DBS would deliver stimulation in a real
context of nocturnal sleep, we segmented a continuous 700-s data in
an exemplary PD subject (PD-8) that included all three stages of
wakefulness, NREM, and REM sleep. We calculated beta power using
the aforementioned Welch periodogram method with a sliding win-
dow of 5 s and a step of 0.5 s. The obtained time-resolved beta activity
was smoothed using a Gaussian filter (sigma = 5) before being input to
the threshold-based adaptive DBS control algorithms. We simulated
adaptive DBS stimulation using a common threshold-based strategy.
The stimulation-triggering threshold was set as the 50th beta power of
wakefulness. The lower and upper stimulation voltage border was 0
and 3 V, respectively. The ramping speed was simulated to be 0.4 V/s.
At last, we calculated the stimulation-on time under the individual
threshold of median beta power of wakefulness for all PD subjects.
Stimulation-on time was compared between NREM and REM sleep and
between four sleep quarters (i.e., 0–25%, 25–50%, 50–75%, and
75–100% of the total length) to test potential influences of early vs. late
stages of sleep on adaptive DBS algorithms over the course of
the night.

Statistical analysis
We performed all statistical tests using NumPy57 and SciPy51 in Python
3.8. Given thatmost studied variableswere of non-normal distribution,
data were presented as the median (interquartile range). Nonpara-
metric tests including the Mann–Whitney U test, Kruskal–Wallis test,
and Friedman test were used and indicated when used. We employed
the Spearman correlation to test potential correlative relationships
between beta power in different stages and clinical scales of interest.
Multiple comparisons were controlled using the Bonferroni correction
with the P value marked as PBonferroni. Two-tailed P-values < 0.05 were
considered significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Due to the data protection regulations of Beijing Tiantan Hospital and
Medical Capital University, the raw sleep electrophysiological data
used in this study are available from the corresponding author (J.G.Z.)
after approval of the IRB of Beijing Tiantan Hospital (E-mail:
ttyyirb@163.com, Tel: +86 10 5997 8555). We are happy to share our
data and provide assistance in obtaining the approval upon
request. Source data are provided with this paper.

Code availability
All relevant codes employed in the study can be freely accessed
without restriction at https://github.com/zixiao-yin/SleepBeta
(Zenodo https://doi.org/10.5281/zenodo.818078058).
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